

<u>₹</u>

Universidad Politécnica de Cartagena Escuela Técnica Superior de Ingeniería Agronómica

Fisiología Vegetal

Murcia 2017

Jorge Cerezo Martínez

Ref. CA. 1.02

Historial del documento

Fecha	Descripción	Rtdo.	Rvdo.	Apdo.
01/12/2017	Examen fisiología vegetal	JCM	JCM	JCM
	70			

- A 25°C, unas células muestran plasmólisis incipiente frente a una disolución de 171 g de sacarosa/l H₂O y ni ganan ni pierden agua frente a una disolución de 114 g sacarosa/l H₂O. Despreciando otros componentes del ψ_w y las diferencias de volumen celular entre plasmólisis incipiente y equilibrio hídrico calcule los valores de ψ_s y ψ_p.
- 2. Esquema/Dibujo del transporte a larga distancia por el floema
- 3. Explique la gráfica en cuanto a relación entre ψ_w y el volumen celular
- 4. Esquema/dibujo de la apertura estomática

Test bloque II

- 1. ¿Cuál de los siguientes elementos está clasificado como macronutriente?
 - Zinc
 - Cloro
 - Calcio
 - Molibdeno
 - Manganeso
- 2. ¿Durante una lluvia fuerte, ¿Cuál de los siguientes iones es más probable que se filtre hacia capas profundas del suelo?
 - Na⁺
 - K⁺
 - SO₄²-
 - NO₃
 - H-
- 3. La fijación del nitrógeno es un proceso que
 - Recicla compuestos nitrogenados de materiales muertos
 - Convierte el amonio en nitrato
 - Libera nitrato de los sustratos rocosos
 - Convierte nitrógeno gas en amonio
 - a y b son correctas
- 4. Las micorrizas incrementan la nutrición de las plantas principalmente por:
 - Absorber agua y simbiosis a través de las hifas fúngicas
 - Suministrar azúcares a las células de la raíz
 - Convertir el nitrógeno atmosférico en amonio
 - Permitir a las raíces parasitar plantas vecinas
 - Estimular el desarrollo de los pelos radiculares.

- 5. Todos los eventos descritos a continuación tienen lugar en la reacción luminosa de la fotosíntesis excepto:
 - Se produce oxígeno
 - El NADP+ se reduce a NADPH
 - El dióxido de carbono se incorpora al PGA
 - El ADP se fosforila para dar ATP
 - La luz es absorbida y dirigida al centro de reacción de la clorofila-a
- 6. Comente los principales grupos de metabolitos secundarios, sus características estructurales principales y al menos dos ejemplos de cada grupo.
- 7. Explique las características fundamentales de las plantas C4 y CAM y las ventajas que aportan sus estrategias con respecto a las plantas C3.
- 8. Comente brevemente y ejemplifique los principales mecanismos de las plantas para la captación de nutrientes
- 9. Describa brevemente los mecanismos o estrategias de defensa de las plantas frente a la fotoinhibición

Preguntas propuestas por alumnos

- 1. Diferencias entre resistencia sistemática adquirida (SAR) y resistencia sistemática inducida (ISR).
- 2. ¿Qué papel desempeña la zeaxantina en la apertura de estomas?
- 3. ¿En qué consiste la respuesta hipersensible de las plantas? ¿En qué se diferencia de lo que llamamos alergias?
- 4. ¿Qué estrategia ponen en marcha las plantas para defenderse de los herbívoros?
- 5. Dibuja la estructura del fitocromo. Tipos y funciones
- 6. Adaptaciones de las plantas xerófitas