PRÁCTICAS DE FLORICULTURA EN LA FINCA TOMAS FERRO 2013-14

Cultivo, seguimiento y aplicación de técnicas de cultivo en plantas ornamentales en maceta: Pelargonium (geranio) y osteospermum (dimorfoteca)

Organización

- Se formaran un máximo de 5 grupos de alumnos de 3-4 alumnos
- Los cultivos se llevaran a cabo en un el invernadero de prácticas (Finca Tomás Ferro) cubierto con policarbonato y con 10 mesas de cultivo y un programador con 5 sectores de riego (2 mesas cada sector)
- Cada grupo dispondrá de un sector de riego con dos mesas de cultivo
- La distribución de las especies será aquella que permita el mismo riego en una misma especie
- Cada mesa dispone de 5 filas, y en cada una de ellas habrá 9 plantas
- Por tanto, cada grupo cultivará como máximo 45 plantas de geranio y otras 45 de osteospermum
- El cabezal de riego está formado por dos depósitos de 500 L, que contendrá una solución de fertirriego, y un programador de jardinería
- Es obligación del alumno el conocer como se programa el programador y decidir los tiempos y frecuencias de riego, así como verificar la disponibilidad de agua en los depósitos

OBJETIVO

Conocer el manejo del riego y del cultivo de plantas de geranio y dimorfoteca en maceta

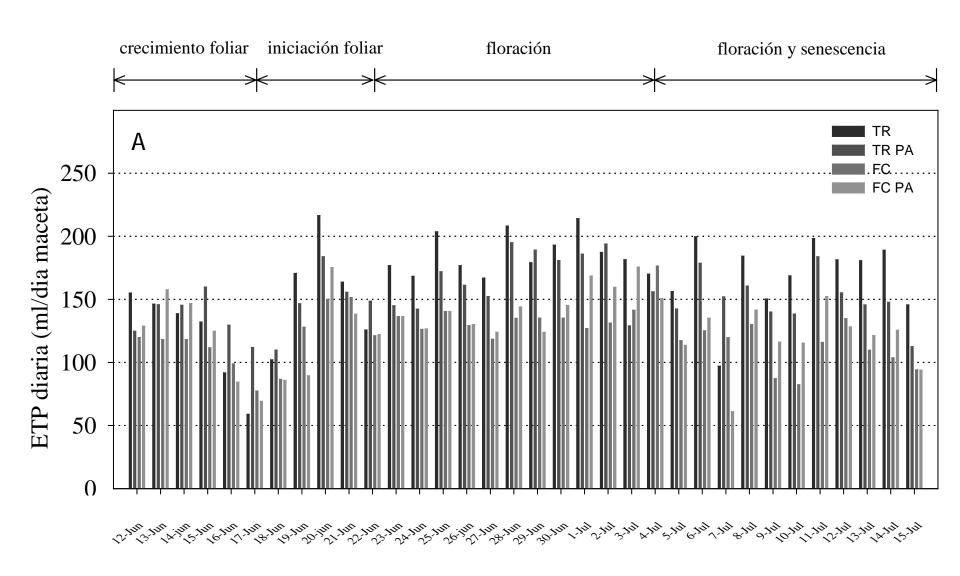
ETAPAS:

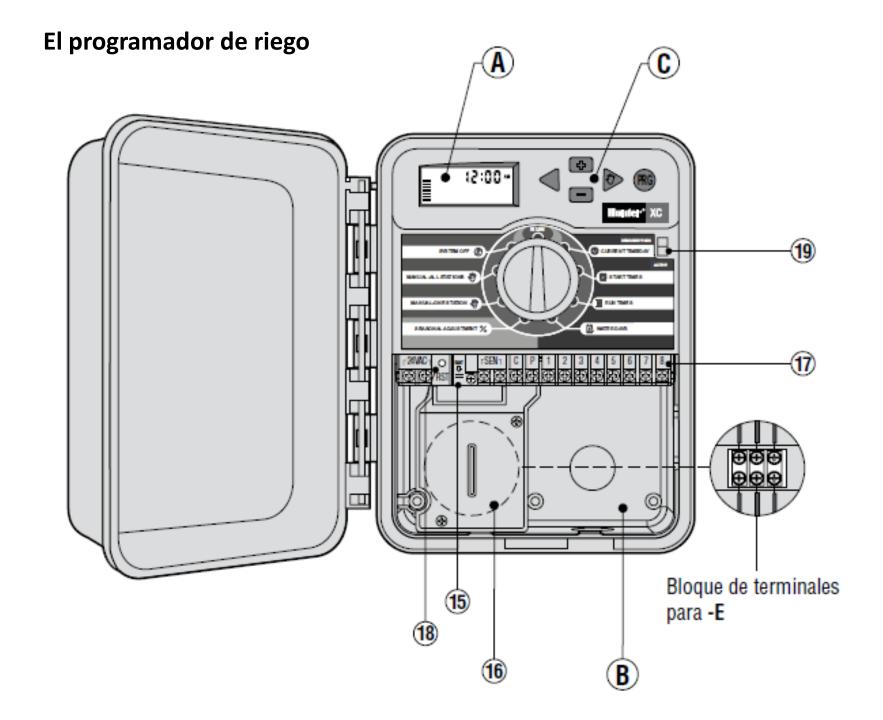
- 1) Formación de sustratos y realización de trasplante
- 2) Seguimiento semanal del cultivo
- 3) Aplicación de fitorreguladores
- 4) Seguimiento semanal del cultivo
- 5) Medidas:
 - Detección y verificación de problemas fitosanitarios
 - Determinar los efectos de los fitorreguladores y síntomas de fitotoxicidad
 - Valoración del crecimiento y desarrollo desde el punto de vista ornamental: determinaciones del tamaño y del color de hojas y flores

<u>Material de partida</u> → geranio zonal (Pelargonium x hortorum) Cultivar Master Idols Red, vigoroso com flores rosas

<u>Transplante</u> → a maceta negra de PVC de 14 cm ø de 1,6 litros de volumen

<u>Sustrato</u> → fibra de coco, turba negra y perlita(40-40-20, % vol.)


<u>Disposición</u> → Sobre mesas de cultivo con drenaje y a un marco de 20 x 25 cm


Fertilización → 2-3 g/L de osmocote 10-11-8+2+microelementos mezclado en el sustrato. En elagua de riego: 80-40-80 ppm de (N-P2O5-K2O)- 0.5 dS·m⁻¹ Para 400 L de agua, añadir 30 g Fosfato monopotasico 42 g nitrato potasico 47g nitrato amonico y 10 gmicoelementos

<u>Riego</u> → Localizado con equipo programable → 1 emisor de 2 l/h con un microtubo de salida en lados opuestos de la maceta (~33 mL/minuto). Riego buscando un drenaje del 15% del control. Programar frecuencia y volumen de riego atendiendo a la evapotranspiración

Aplicación de fitorreguladores → En cada mesa habrá 5 dosis o concentraciones de producto químico, un control (sin fitoquímico) y cuatro dosis en aumento

Evapotranspiración del geranio

FORMULARIO DEL CALENDARIO DE RIEGO

33 mL/minuto

HUNTER XC Hybrid			PROGRAM A						PROGRAM B						PROGRAM C								
DAY OF THE WEEK		MO	TU	NE	TH	FR	SA	SU	M0	TU	WE	TH	FR	SA	SU	MO	TU	WE	TH	FR	SA	SU	
ODD/EVEN OR INTERVAL			X	2	K			X															
PROGRAM 2 START TIMES 3																							
		2																					
		3																					
		4																					
STATION LOCATION			STATION RUN TIME					STATION RUN TIME					STATION RUN TIME										
1	1 Mesa 1-2, osteosp.		231mL (7 m)																				
2	2 Mesa 3-4, osteosp		231mL (7 m)																				
3 Mesa 5-6, hortensia		231mL (7 m)																					
4 Mesa 7-8, geranio-		osteosp 231mL (7 m)																					
5	5 Mesa 9-10, osteosp 231			31r	nL ((7 m))																
6																							
-																							

Evolución del cultivo

Durante las 3 primeras semanas eliminaremos los brotes floríferos

Aplicación foliar de fitorreguladores

- 1. Ponerse los guantes
- 2. Para productos en polvo o granulados pesar la dosis de producto
- 3. Para líquidos a bajas dosis, usar un pipeta de 5 mL desechable; para dosis grandes usar un vaso graduado
- 4. Disolver el producto en agua en un vaso de graduado
- 5. Echarlo a la mochila/bote de pulverización, rellenando con agua hasta completar el volumen total (≈100 mL por planta a pulverizar)
- 6. Aplicar unas gotas de mojante

Pesar materias activas o diluirlas en agua

Prepara el siguiente material:

- Pulverizar hasta mojar todo el follaje, no más
- Mojar más las plantas más grandes
- Según productos, habrá que repetir la operación 2 ó 3 veces

Aplicación al sustrato de fitoquímicos

- 1. Pesar la dosis de producto
- 2. Disolverlo en 1 vaso de 1 ó 2 L
- 3. Aplicar vertiendo directamente al sustrato un volumen establecido por maceta (según producto)

RETARDADORES DEL DESARROLLO VEGETAL

- Actualmente hay sintetizados numerosos retardadores del desarrollo vegetal, cuyos efectos principales son:
 - i. Mejorar la compacidad y reducir el tamaño de las plantas
 - ii. Exaltación del color verde del follaje
 - iii. Aumentar la ramificación
 - iv. Favorecer y sincronizar la floración
- No todos ellos están disponibles en todos los países,
 y algunos son más usados que otros

Cloruro de clormequat

Cloruro de mepiquat

Etefón

Paclobutrazol

Daminozida

Prohexadiona de calcio

Hidracida maleica

- 1) Cada grupo aplicará dos tipos de fitorreguladores, uno sobre geranio y otro distinto sobre dimorfoteca
- 2) Preferentemente, una aplicación será al sustrato y otra en pulverización
- 3) Las aplicaciones de fitorreguladores se iniciaran cuando las plantas tengan una roseta de hojas de 12-15 cm de diámetro. Normalmente a las 4-5 semanas tras el trasplante

Dosis de materia activa más usuales

Al sustrato (mg/maceta) y en pulverización (concentración x volumen)

PRODUCTO	ppm	mg/maceta
Paclobutrazol	2-90	0.1-50
Cloruro de clormequat	500-3000	500-2000
Prohexadiona cálcica	50-1000	-
Etefón	500-1500	100-1500
Cloruro de mepiquat	1000-5000	-
Daminocida	1500-5000	-


http://www.ces.ncsu.edu/depts/hort/floriculture/software/pgr.html

CLORURO DE CLORMEQUAT

- El primer antecedente del uso de un producto químico para controlar la altura de plantas lo encontramos en el cloruro de clormequat
- Este compuesto fue la chispa que provocó el interés de los retardadores del desarrollo vegetal en floricultura, dados los efectos restrictivos que ocasionó sobre el desarrollo de la poinsetia
- Tiene una menor actividad cuando se aplica al sustrato que foliarmente (esta forma es menos rentable porque se pierde efecto). Al aire libre no debe aplicarse al sustrato o suelo, y no es recomendable su aplicación por el sistema de riego
- Cuando se aplican dosis altas, en algunos cultivos puede producir clorosis foliares e incluso necrosis, normalmente reversibles
- Reduce el tamaño y la altura de las plantas, siendo particularmente deseable para cultivos que requieren un efecto moderado sobre la altura de la planta
- En hibisco puede promover la floración temprana cuando se aplica en con los brotes pocos crecidos
- Se metaboliza rápidamente en la planta y puede transformarse en otros productos, lo que puede originar una falta de efectividad e incluso puede ocasionar el efecto contrario: estimulantes del desarrollo
- Es utilizado principalmente en poinsetia, geranios, azaleas, hibiscos, etc.

Rates of Chlormequat chloride above 1500 ppm often cause chlorosis on young, treated leaves of floricultural crops (*Pelargonium hortorum* and *Euphorbia pulcherrima*)

DAMINOZIDA

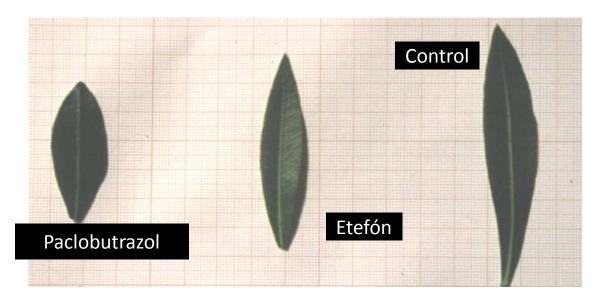
- Apareció tras cloruro de clormequat, empleándose para mejorar la resistencia a la sequía, plagas y enfermedades de las plantas de temporada; fue empleado también para reducir el tallo del crisantemo
- Finalmente, este regulador pudo resolver el difícil problema que tenían los cultivares de hortensias para controlar su altura y adecuarla al tamaño de la maceta
- Sólo es efectivo en pulverización, ya que se degrada rápidamente en el suelo
- Se absorbe lentamente por la planta, pero se desplaza rápidamente dentro de ella
- La baja actividad de daminozida obliga a aplicar varios tratamientos
- No suele ser fitotóxico y rara vez su aplicación resulta en sobreachaparramiento
- La poca actividad de este producto junto con la ausencia de afectos por el sustrato, hace que sus efectos sobre las plantas sean bastante predecibles
- Numerosas especies perennes han respondido a las aplicaciones múltiples de daminozida. Es muy activo en crisantemo, azaleas, girasol, gardenia y hortensia y, sin embargo, está poco indicado para impatien, geranio y lilium

PACLOBUTRAZOL

- El paclobutrazol pertenece al grupo de fungicidas triazoles, pero al mostrar mayor actividad retardadora del desarrollo que fúngica, fue elegido como retardador
- Los triazoles interfieren el metabolismo de los esteroles, un componente imprescindible de la pared celular en hongos, e inhibe la biosíntesis de las giberelinas
- Puede ser aplicado vía foliar o al sustrato, siendo más efectivo en la 2ª forma. Su transporte por el xilema favorece su desplazamiento con la savia bruta hacia los puntos en crecimiento
- Paclobutrazol is absorbed by roots and stems, and to a lesser extent, by leaves
- En el suelo, su persistencia es superior a la de los retardadores del desarrollo tradicionales, generando problema de residuos. En la planta, el paclobutrazol es catabolizado muy lentamente
- Suele ser muy efectivo a dosis bajas. Se ha probado en una amplia variedad de perennes ornamentales, con especies que van desde extremadamente sensible a dosis bajas a las que no responden a tasas muy altas. Su eficacia ha incentivado la realización de investigaciones en los últimos, con resultados útiles para controlar diversos aspectos de desarrollo y en distintos cultivos, como frutales, cereales, ornamentales, etc.
- Tiene capacidad para endurecer y contrarrestar estreses, mejorando la resistencia a la manipulación y transporte

Polygala sp. tratada con el paclobutrazol

PROHEXADIONA CÁLCICA


Regalis

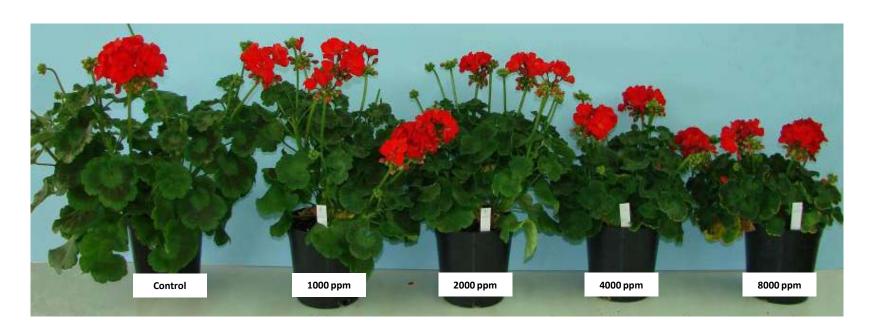
- Es el retardador más **reciente** de todos: registrado en el 2002
- Su utilización en ornamentales no está todavía muy extendida
- Se aplica principalmente en frutales de pepita (manzano y peral) para regular el equilibrio entre el desarrollo vegetativo y la producción de fruta
- Además de actuar sobre las giberelinas, inhibe la formación del etileno lo que favorece el cuajado y la retención de frutos ante las caídas de primavera
- Se debe aplicar en pulverización foliar, produciendo sus efectos entre 2-4 semanas desde su aplicación
- Es muy **poco persistente** o residual, lo que exige realizar varias aplicaciones
- El calcio en el agua de aplicación lo desactiva, lo que obliga a aplicar sulfato amónico en la solución
- Los mojantes iónicos pueden interferir y reducir su efecto: usar mojante no iónico, DASH
- Se ha sugerido que interfiere el metabolismo de los flavonoides induciendo resistencia a Erwinia amylovora

ETEFÓN

- Es la forma comercial de aplicar **etileno**. Es una solución estable a pH 3 y cuando entra en la planta se libera el etileno
- En plantas ornamentales su uso más importante es **favorecer la ramificación** (activa la brotación lateral) y **reducir la altura de planta** (reduce la longitud de entrenudos)
- Modifica la forma y tamaño de las hojas, y hace que las hojas sean más claras (verde amarillento)
- Si las flores están presentes en el momento de la aplicación, es probable que aborten
- Etefón puede retrasar la floración de 1-2 semanas, particularmente si se aplica cerca de la iniciación floral
- Etefón no debe aplicarse a las plantas estresadas con calor o sequía

Toxicidad de etefón en geranio

CLORURO DE MEPIQUAT


Se aplica <u>foliarmente</u> y, tras ser tras ser absorbido, se mueve en la planta hacia arriba por el <u>xilema</u> y por el <u>floema</u> desde la hoja a los órganos sumideros

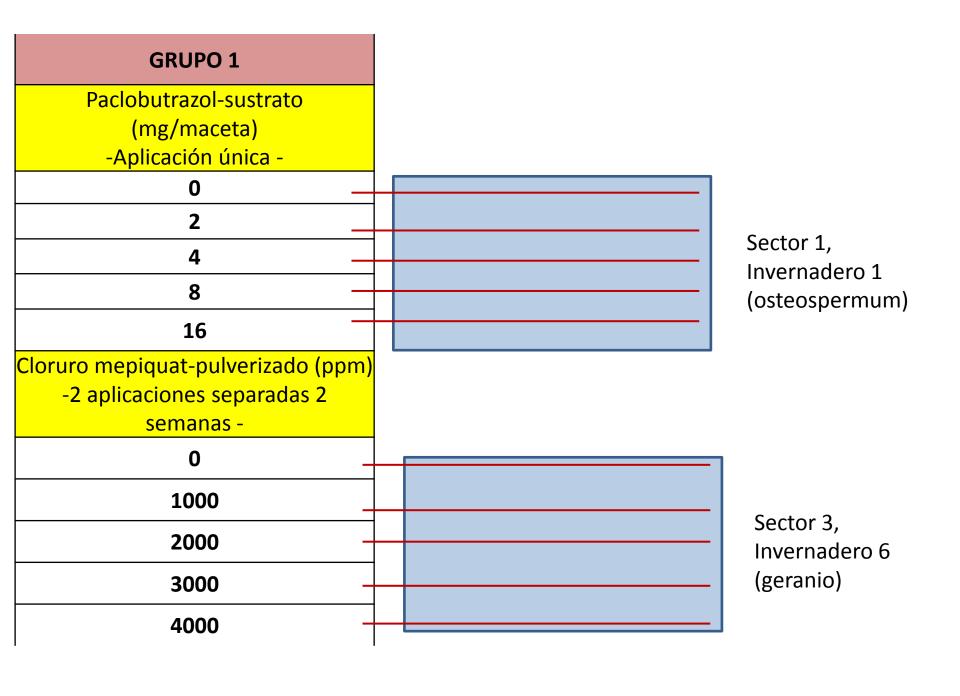
Es un amonio cuaternario que actúa <u>inhibiendo</u> la biosíntesis de las GAs

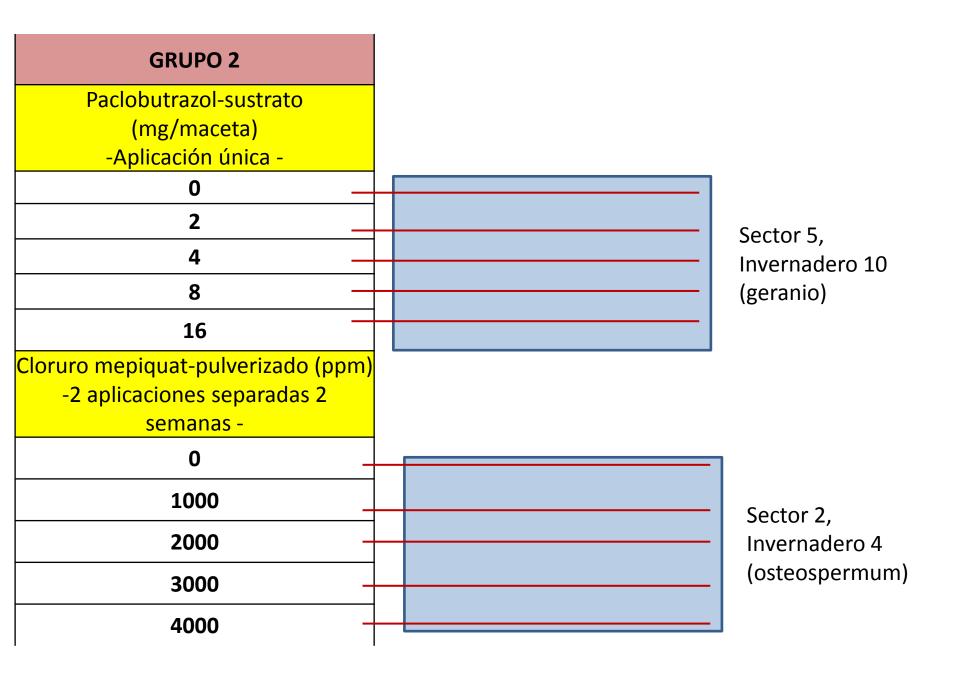
Poco utilizado en plantas ornamentales hasta el momento

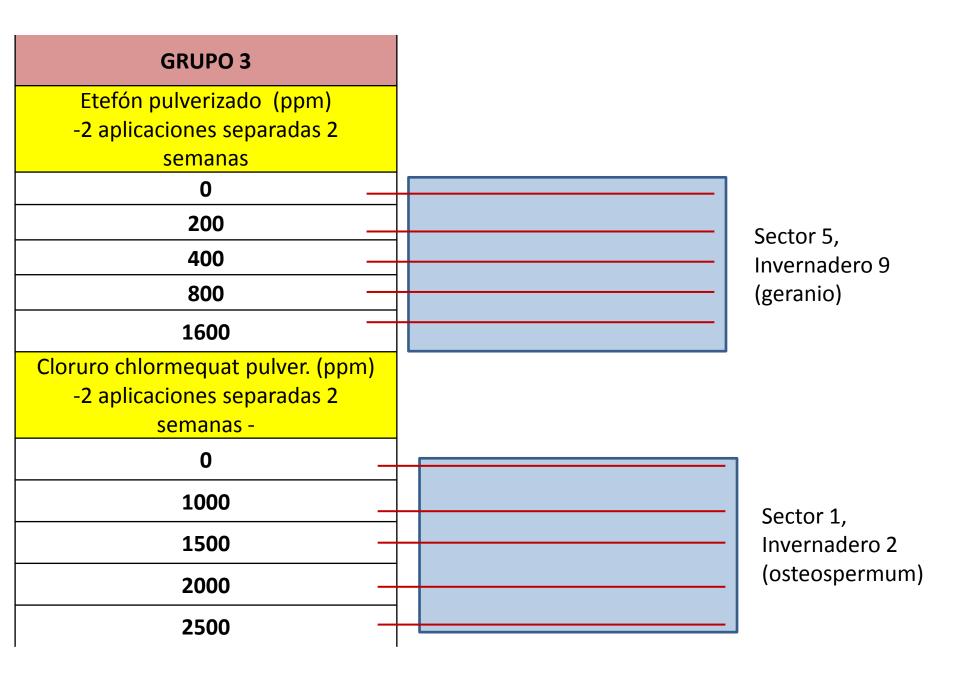
 Se utiliza en algodón para retener los órganos fructíferos y para un desarrollo de las cápsulas más homogéneo (así, la primera recolección es más productiva)

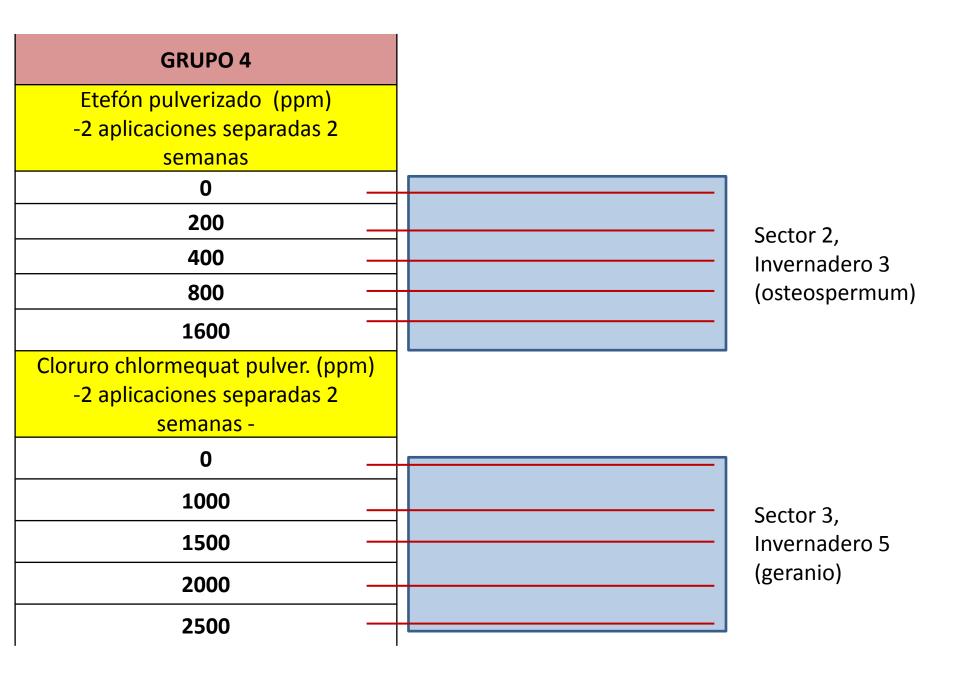
También se aplica en <u>ajos, cebolla y melón</u> para homogeneizar el tamaño. En <u>melón</u> para aumentar la precocidad de la cosecha. En ajo y cebolla para incrementar la producción. En vid para controlar el crecimiento

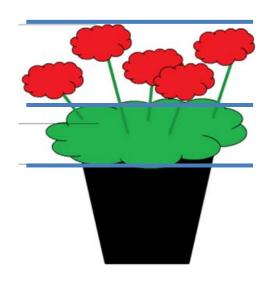
HIDRAZIDA MALEICA

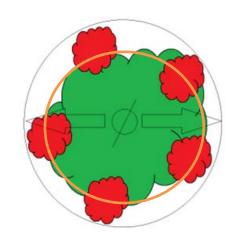

Más que un retardador del crecimiento se considera un supresor del mismo de pinzado químico

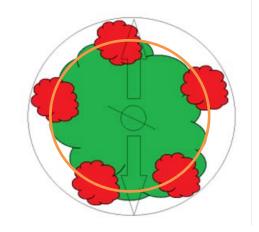

 Inhibidor del crecimiento de los brotes axilares de tabaco, y como inhibito brotación en cebolla y de la patata


- Es un retardador del crecimiento en césped
- Protege a las plantitas de cítricos contra las heladas
- Alarga la vida de las rosas cortadas



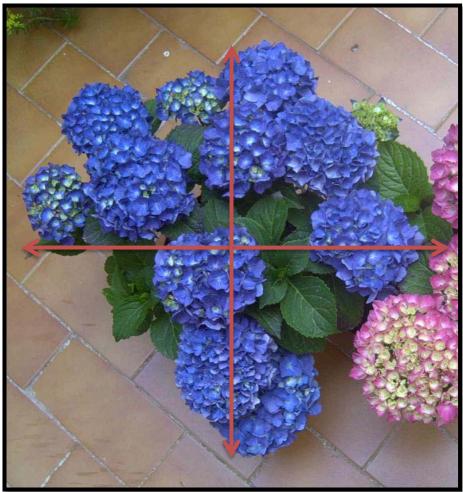

Estudio interactivo entre fitohormonas


- Para el sector 4, la mesa 7 soporta geranio y la mesa 8 osteospermum
- Los grupos 1 y 2 se encargan de la mesa del geranio, y los grupos 3 y 4 de la del osteospermum
- Dos aplicaciones espaciadas 2 semanas


Daminocida (1500 ppm)+ Cloruro de mepiquat (1500 ppm)
Daminocida (3000 ppm)
Cloruro de mepiquat (3000 ppm)
Daminocida (1500 ppm)
Cloruro de mepiquat (1500 ppm)

MEDIR LA DIMENSIÓN DEL FOLLAJE Y DE LA PLANTA

Medición de anchura y altura del follaje y de toda la planta



NÚMERO Y TAMAÑO DE INFLORESCENCIAS, BROTES, HOJAS...

PRECOCIDAD DE LA FLORACIÓN

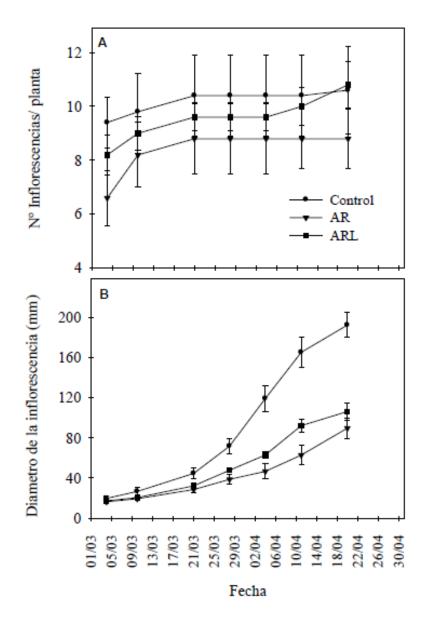


Figura. 2.3.7.- Evolución del numero de inflorescencias por planta (A) y del tamaño de inflorescencia (B) durante la floración en $Hydrangea\ macrophylla\ Thunb.$ 'Leuchtfeuer'. Los datos son medias (n = 5) \pm ES (barras verticales).

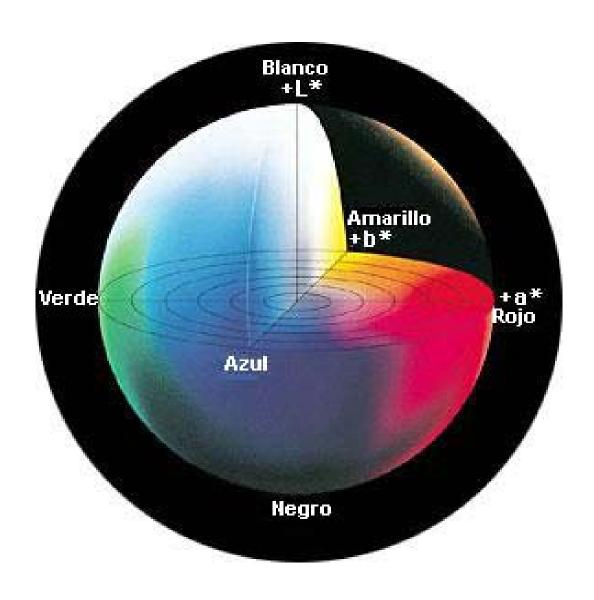
CALCULO DE ÍNDICES DE COMPACIDAD

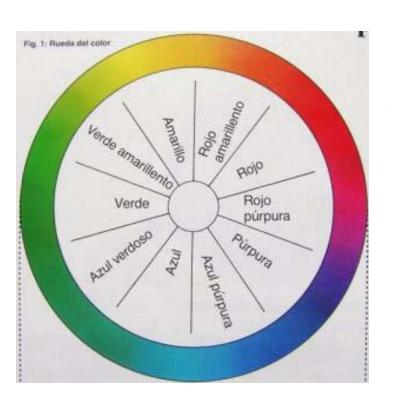
- Un índice de compacidad sencillo y fácil de medir en las plantas es la relación área foliar/altura de planta. Cuanto mayor es más compacidad hay
- > Otro índice de sería la relación área foliar/volumen estimado
- > Para plantas que tienen una forma más o menos redondeada:

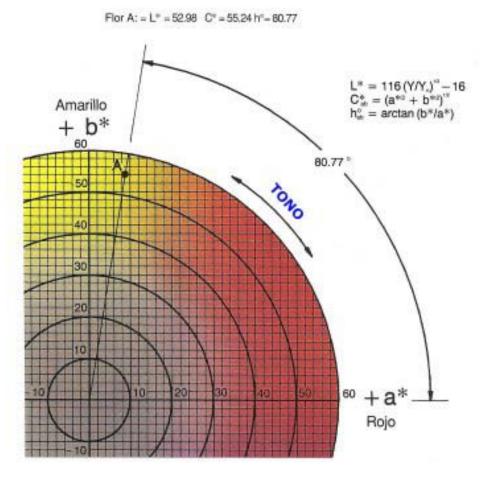
COMPACTNESS INDEX= plant profile area/ $[(\pi/4)x((height + width)/2)^2]$

- The plant profile area is the plant area within the plant perimeter
- The plant area, and the height and width of the plant, were obtained from the picture using the software UTHSCSA Image Tool (University of Texas, San Antonio, TX)
- Two indexes were calculated for the side and top image, and the average of both is given as the final index of compactness
- The closer the result was to unity, the more compact were the plants

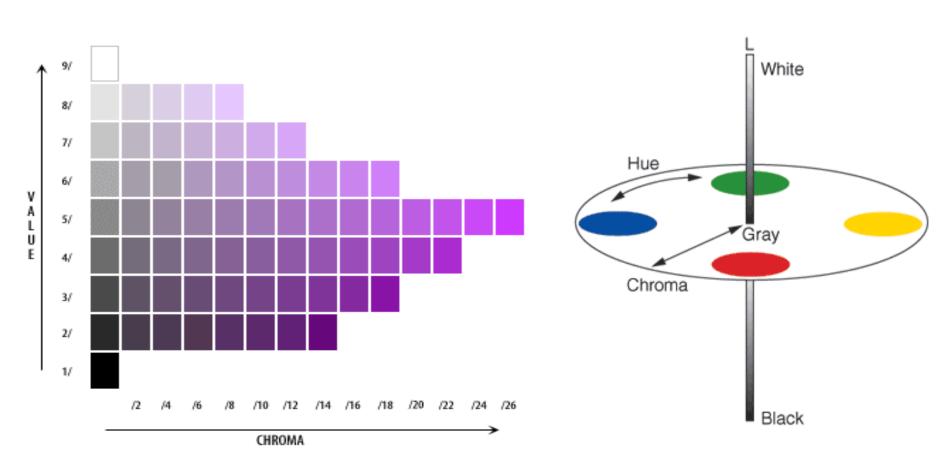
MEDIDA DEL COLOR DE FLORES Y HOJAS

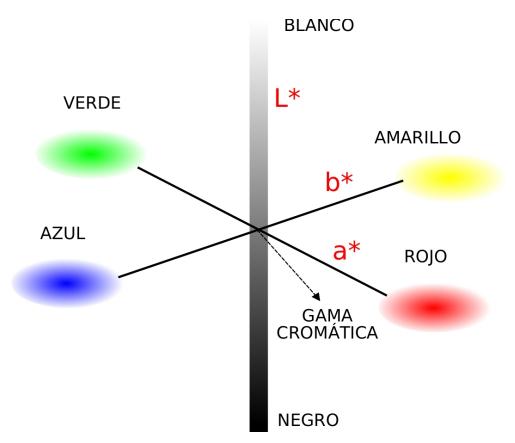

Utilizaremos un método para medir el color de las inflorescencias y hojas que **expresan los colores numéricamente**, de forma similar a la longitud o el peso



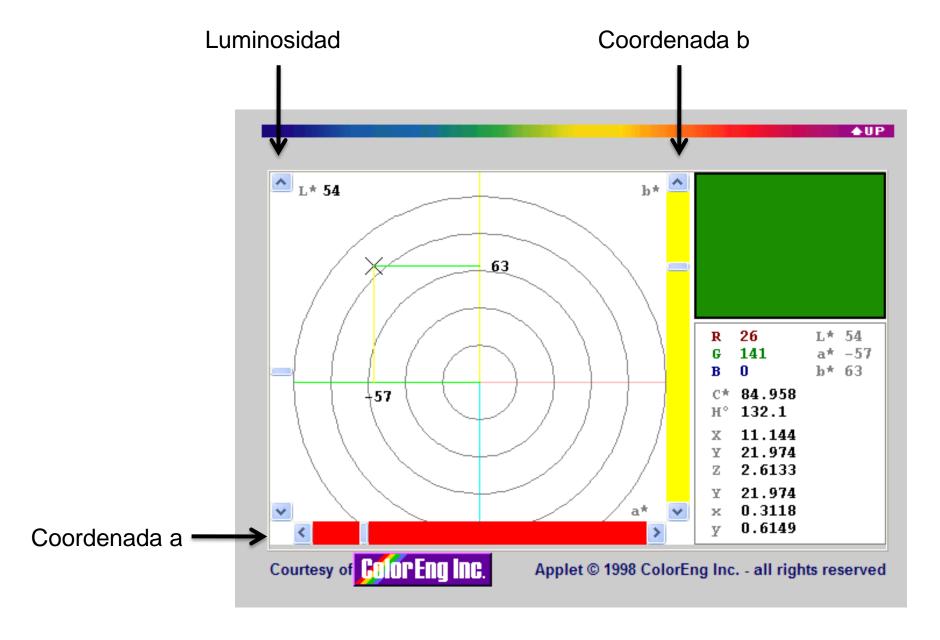

- El color no es fácil de analizar ya que **el criterio de análisis no es el mismo** para todas las personas. Por ejemplo, lo que para una persona un rojo parece más anaranjado, para otros parece más púrpura. Y lo contrario, personas distintas pueden estar de acuerdo en que radiaciones físicamente distintas parecen cromáticamente iguales. Es decir, están de acuerdo en la igualdad entre **sensaciones de color**
- En esto **pueden influir otros factores**, además del humano, como el tipo de luz a que encuentra expuesto, el local donde él se encuentra en lo que se refiere al fondo, el ángulo de observación, etc.
- Por ello, se han creado métodos para cuantificar el color con el objetivo de comunicar los colores de un modo más sencillo y preciso porque expresan los colores numéricamente, de forma muy similar a la que expresamos la longitud o el peso, y por tanto podemos hacer comparaciones
- El problema está en que los valores numéricos no transmiten a la persona la sensación de un determinado color

Tono, Luminosidad y Saturación


Las medidas del ángulo hue es una medida de absorción selectiva de luz visible, y describe en que longitud de onda el color es absorbido, es decir el tono, que puede ser amarillo, verde amarillento, azul verdoso, azul, etc.



CROMA


Describe en qué grado la absorción selectiva ocurre, lo que determina la mayor o menor viveza (saturación/palidez) del color, existiendo colores mas apagados (grisáceos) y otros más vivos

- Los colores pueden dividirse en colores claros y oscuros cuando se compara su luminosidad
- \circ La luminosidad puede medirse independientemente del tono, y va del blanco al negro
- La luminosidad mide la capacidad de reflexión de una superficie, es decir la mayor o menor claridad

Landon Single and American

http://www.colorpro.com/info/tools/labcalc.htm#TOP

EL COLORÍMETRO

INFORME DE PRÁCTICAS

- 1. TÍTULO, debe reflejar el contenido, no ser demasiado largo ni corto y no incluir palabras superfluas
- INTRODUCCIÓN, debe contener la identificación del material vegetal a estudiar, la descripción del problema y exponer claramente los objetivos
- 3. MATERIAL Y MÉTODOS, descripción del material vegetal, de las condiciones de cultivo (macetas, sustratos, fertilización, riego, etc.), comentar los problemas fitosanitarios observados, decir los tratamientos y qué parámetros vegetales se midieron
- 4. RESULTADOS, exposición de resultados en tablas o figuras: no incluir de más. ¡¡¡Incorporar fotografías!!!
- 5. DISCUSIÓN, no se debe repetir los resultados, hacer interpretaciones y reflejar las conclusiones basadas en los resultados